
AutoIAS: Automatic Integrated Architecture Searcher for
Click-Trough Rate Prediction
Zhikun Wei1, Xin Wang1,2,∗, Wenwu Zhu1,2,∗

weizk19@mails.tsinghua.edu.cn,{xin_wang,wwzhu}@tsinghua.edu.cn
1Tsinghua University 2Pengcheng Laboratory

ABSTRACT
Automating architecture design for recommendation tasks becomes
a trending topic because expert efforts are saved, and better per-
formance is expected. Neural Architecture Search (NAS) is intro-
duced to discover powerful CTR prediction model architectures
in recent works. CTR prediction model usually consists of three
components: embedding layer, interaction layer, and deep neural
network. However, existing automation works focus on search-
ing single component and leaving other components hand-crafted.
The isolated searching will cause incompatibility among compo-
nents and lead to weak generalization ability. Moreover, there is
not a unified framework for integrated CTR prediction model ar-
chitecture searching. This paper presents Automatic Integrated
Architecture Searcher (AutoIAS), a framework that provides a prac-
tical and general method to find optimal CTR prediction model
architecture in an automatic manner. In AutoIAS, we unify existing
interaction-based CTR prediction model architectures and propose
an integrated search space for a complete CTR predictionmodel. We
utilize a supernet to predict the performance of sub-architectures,
and the supernet is trained with Knowledge Distillation(KD) to
enhance consistency among sub-architectures. To efficiently ex-
plore the search space, we design an architecture generator network
that explicitly models the architecture dependencies among compo-
nents and generates conditioned architectures distribution for each
component. Experiments on public datasets show the outstanding
performance and generalization ability of AutoIAS. Ablation study
shows the effectiveness of the KD-based supernet training method
and the Architecture Generator Network.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Click-Trough Rate Prediction; Neural Architecture Search; Unified
Search Space; Architecture Generator Network
ACM Reference Format:
Zhikun Wei1, Xin Wang1,2,∗, Wenwu Zhu1,2,∗. 2021. AutoIAS: Automatic In-
tegrated Architecture Searcher for Click-Trough Rate Prediction. In Proceed-
ings of the 30th ACM International Conference on Information and Knowledge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482234

Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482234

1 INTRODUCTION
Recommender system plays an important role in many real-world
scenarios[2, 22, 31]. These applications can be modeled as Click-
Through Rate (CTR) prediction tasks. The objective is to estimate
the probability of a user clicking a recommended item. The more
accurate the CTR prediction is, the more profit can be made. It is in
great need for the commodity or ads provider to design a prediction
model that can maximize CTR.

Recent works show architecture design is crucial to the perfor-
mance of CTR models [3, 10, 18]. Automated Machine Learning
(AutoML) techniques are introduced to help design CTR prediction
model architectures because hand-crafted architectures are heavily
dependent on expert knowledge and it can not guarantee optimality
[15, 19, 21, 32]. Neural Architecture Search (NAS) is the most used
method, which aims at finding an optimal architecture from given
search space automatically. Existing works apply NAS to optimize
the components of CTR prediction model. For the embedding com-
ponent, some works [7, 21, 41, 42] search embedding size. For the
interaction component, previous works select important feature
combination [19], model user behavior [40] or design interaction
function [15] automatically. However, these works focus on search-
ing only one isolated component and other components remain
hand-crafted. This kind of isolated searching causes three problems:
1) The other hand-crafted components are less likely to construct
an optimal framework, making the whole model defective even if
the searched component perfectly fits in the given context. 2) The
generalization ability is weak because they do not provide enough
space for the algorithm to explore. 3) In practice, existing search
space and search algorithms are designed for specific components,
and they can not trivially extend to an integrated CTR prediction
model search framework.

To address the above problems, we consider how to apply the
NAS algorithm to an integrated CTR prediction model design effec-
tively and efficiently. There are four critical challenges:
(1) How to design an integrated search space for multiple
components? The unified model consists of different types of ar-
chitectures, and each component has a different search space. Extra
interfaces space should be designed to connect these components.
(2) How to efficiently explore and optimize models in search
space? It is difficult to enumerate all the architectures and train
them separately because of the large search space. We tackle this
problem by adopting a parameter sharing supernet. Considering
that the search spaces of most components are dimensions, we let
the architectures with high dimensions share their parameters with
∗Corresponding authors

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2101

https://doi.org/10.1145/3459637.3482234
https://doi.org/10.1145/3459637.3482234

…

…

y

1 0 1 0 0 1 0 0 1

Feature 1 Feature 𝒊 Feature 𝒏Feature 𝒋

………

… … …

Product Concat Plus

Gate

The Architecture
Generator Network

CTR Prediction Model Search Space

𝝅(𝒂𝟏|𝜽, 𝒔𝟎)

MLP Structure

Interaction Function

Selection Gate

Projection Space

Embedding Space

𝝅(𝒂𝟐|𝜽, 𝒔𝟎:𝟏)

𝝅(𝒂𝟑|𝜽, 𝒔𝟎:𝟐)

𝝅(𝒂𝟒|𝜽, 𝒔𝟎:𝟑)

𝝅(𝒂𝟓|𝜽, 𝒔𝟎:𝟒)

𝜽

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝟒

𝒔𝒊𝝅𝒊 Sample 𝑺𝒊 from probability distribution 𝝅𝒊

Chosen structure

Unchosen structure

Figure 1: The framework of Automatic Integrated Architecture Searcher (AutoIAS). The left part is the architecture generator
network. 𝜋𝑖 (𝑎𝑖 |\, 𝑠0:𝑖−1) is the probability distribution over component architecture space 𝑎𝑖 given the network parameter \ and
all previous components architecture choice state 𝑠0:𝑖−1. The right part is the integrated search space where all components
have their own architecture space, and the architecture choice is sampled from the probability distribution generated by the
Architecture Generator Network.

architectures with low dimension. In this way, the parameters can
be reused for architecture searching.
(3) How to get stable and consistent performance prediction?
Stable and consistent performance predictions can guide the search-
ing process and help to find better architectures. However, it is diffi-
cult to get a stable and consistent performance of sub-architectures
from a supernet because updates of sub-architectures will influence
each other. Previous works tried to solve it by fairly sampling[5],
but the separated updating still may cause inconsistency between
sub-architectures. To handle this problem, we utilize Knowledge
Distillation(KD)[12] in the training process. We let the supernet
digest incoming data to make a global parameter update and then
distillate knowledge to its sub-architectures. In this way, all the
sub-architectures will be updated in the same direction as the su-
pernet, and the parameters of different sub-architectures will stay
consistent.
(4) How to model the dependency among different compo-
nents? CTR prediction model consists of multiple types of com-
ponents which are correlated closely. The architecture choices of
previous components can have a significant influence on later com-
ponents. We design a generator network to explicitly model the
relations. The generator network will generate an architecture prob-
ability distribution for a component based on the architectures of
previous components.

Based on the above consideration, we integrate our solutions as a
framework, Automatic Integrated Architecture Searcher (AutoIAS),
to automatically search for an integrated CTR model architecture
whose components are compatible with each other. An overview

of AutoIAS is shown in Figure 1. The framework has two main
parts. One is the architecture generator network. Given the previ-
ous components’ architecture choice, it will generate probability
distributions over the architecture choices for each component. The
other is the CTR prediction model search space. The CTR prediction
model architecture is divided into five components: the embedding
component, the projection component, the interaction component,
the selection component, and the MLP structure component. Each
component contains an operation set according to its functional-
ity. All the components compose a path for feature interaction.
The search space includes not only traditional hand-crafted archi-
tectures such as DeepFM[10], Wide&Deep[3], but also the search
space proposed by other NAS-based models such as AutoEmb[42],
AutoFIS[19].

We conduct extensive experiments on public CTR prediction
datasets which are used as benchmark for hand-crafted CTR pre-
diction models[3, 10] and NAS-based methods[19, 42]. Experiment
results show our framework can generate a CTR prediction archi-
tecture with better generalization ability than other baselines and
is on a par with baselines in terms of performance. Ablation study
shows the efficiency and effectiveness of the KD-based supernet
training method and Architecture Generator Network.

In general, the main contributions of this paper are:

(1) We propose an Automatic architecture searching framework,
AutoIAS, to search for the best integrated CTR prediction
model architecture. To the best of our knowledge, it is the
first searching framework that unifies all the components.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2102

(2) We utilize Knowledge Distillation-based supernet training
method to obtain stable and consistent architecture perfor-
mance predictions for sub-architectures.

(3) We propose an effective searching strategy that utilizes an
architecture generator network to explicitly model the ar-
chitecture dependency between components.

(4) Substantial experiments conducted on public CTR datasets
show that AutoIAS has better generalization ability than
other CTR prediction model searchers. Ablation study shows
that our proposed optimization methods are effective for the
training.

The remaining parts of this paper are organized as follows. In
Section 2, we review previous work about CTR prediction and NAS;
In Section 3, we introduce the proposed framework AutoIAS in
detail; In Section 4, we present the experiment settings and results;
In Section 5, we concisely conclude this paper.

2 RELATEDWORK
Our work involves two research topics: CTR prediction and NAS.
Related work will be introduced briefly in this section.

2.1 CTR Prediction
Recent research shows that architecture design is crucial to the
performance of CTR models[10, 26]. Due to the special data for-
mat (mostly sparse category data) in the recommendation tasks,
CTR models usually consist of three components[15]: embedding
layer, interaction layer, and deep neural networks. On the one
hand, these components have unique architecture space, and they
must be designed respectively. On the other hand, all the compo-
nents must be considered simultaneously because they form an
end-to-end pipeline to process data. There are plenty of works that
design architecture in a hand-crafted manner. Linear models[22]
shows decent performance. FactorizationMachines (FM)[29] and its
derivatives[11, 14, 30] achieve promising results by encoding sparse
data into embedding vectors and designing explicit interaction func-
tions to capture low-order feature interaction; Multi-Layer Percep-
trons (MLP) or deep neural networks are used to implicitly model
high-order feature interaction such as Wide&Deep[3], DLRM[23];
Both low- and high-order feature interactions are learned simul-
taneously by combining FM and deep neural networks in paral-
lel (DeepFM[10]) or in a row (PNN[25], PIN[26]); DCN[34] and
xDeepFM[18] further design architecture to handle explicit high-
order feature interaction. However, the motivations of these archi-
tectures are heavily based on expert knowledge and experience.
Besides, these architectures are usually hand-crafted, which re-
quires high labor costs and causes uncertainty about the optimality.

2.2 NAS And Its Application in CTR Prediction
Model.

AutoML techniques are introduced to help design CTR model archi-
tectures in recent works[15, 32]. The most used method is Neural
Architecture Search (NAS), which automatically finds an optimal
architecture from a given search space. There are usually three
components in NAS: search space, search algorithm, and perfor-
mance evaluation method. Search space defines what architectures
can be searched and how the architectures are represented. Search

algorithm defines how the search space is explored. The perfor-
mance evaluation method defines how to evaluate the architectures
and returns the optimality of the searched architectures. Since the
proposal of NAS[43], extensive improvements are proposed to en-
hance utility and generalization[20, 24]. As a general solution to
automatic model design, NAS has been widely used[35, 36]. Follow-
ing the great success of NAS in Computer Vision, Natural Language
Processing and Graph tasks[6, 9, 28, 37, 39], NAS is introduced to
recommender system, especially CTR prediction task[13, 32]. When
NAS automates the model’s design process, the high labor costs are
saved, and an optimal architecture is expected.

As aforementioned, there are three components in CTR predic-
tion models, and they have different architecture spaces.

The embedding layer, also called the representation layer, learns
to project the sparse category data into a continuous embedding
space. One key hyper-parameter in the embedding layer is the
embedding vector size for features (or users/items). Embedding
vectors with proper size can represent the data correctly and boost
the performance of the whole model[13], while improper embed-
ding sizes may introduce noise or overfitting problems. NIS[13]
first pays attention to the design of the input component of the
recommender system and tries to find the best embedding and vo-
cabulary sizes. DNIS[4] improves NIS using a differentiable method.
AutoEmb[42] and [7] enable various embedding dimensions to
represent users/items with different popularity. AutoDim[41] uses
weight sharing[24] techniques to search embedding dimension.
Embedding Size Adjustment Policy Network[21] is proposed to dy-
namically adjust embedding size in a streaming setting. However,
the above methods have to project different dimension embeddings
into a uniform dimension because subsequent components only
accept uniform dimension vectors as inputs. No work notices that
the interface between components also forms a search space. The
projection dimension should be considered an important architec-
ture parameter because it decides the representation ability for the
original interacted feature information.

The interaction layer is regarded as the most important compo-
nent in CTR models[38]. Explicit feature interaction methods can
significantly improve the performance of CTR models[10]. Factor-
ization machine (FM) based works[10, 14, 29] define the interaction
function in a hand-crafted manner and select feature combina-
tions by guessing or enumerating all possible situations. NAS is
introduced to optimize the interaction layer. Yao et al.[38] finds
expressive simple neural interaction functions. AutoFeature[15]
searches proper sub-network structures to model essential feature
interactions. AutoFIS[19] makes feature interaction selection differ-
entiable. AMER[40] designs three stage search space to model user
behavior automatically. However, aforementioned works only focus
on interaction layer and leave other components hand-crafted.

MLP approximates the high-order feature interactions and serves
as a subsidiary component in CTR models. The necessity of MLP
lies in the fact that those easily understood feature interactions
can be designed by experts, but there are many complex or irreg-
ular interactions hidden in data[10]. Although researchers attend
to combine low- and high-order interaction in both explicit and
implicit way[18, 34], little attention is paid to the unified search of
explicit and implicit feature interaction.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2103

3 AUTOIAS
This section will introduce the proposed framework AutoIAS in
detail. In the following, we will show the problem formulation in
Section 3.1, introduce how the integrated search space of each com-
ponent is designed in Section 3.2, explain how to get performance
prediction by supernet and its optimization method in Section 3.3,
describe the search strategy which utilizes an architecture gener-
ator network and its optimization method in Section 3.4, and the
overall optimization algorithm is presented in Algorithm 1.

3.1 Problem Definition
3.1.1 Native NAS Formulation. The goal of NAS is to find the ar-
chitecture with the best performance in a given search space. It is
a two-level objective: 1) find the best architecture; 2) find the best
parameters for each architecture. Compared with previous work,
the search space consists of multiple components in this paper. It
can be formulated as a bi-level optimization problem[20]:

𝑎∗1:𝑇 = arg min
𝑎𝑖 ∈𝐴𝑖 ,𝑖=1,.,𝑇

L𝑣𝑎𝑙 (𝑎1:𝑇 , 𝜔
∗ (𝑎1:𝑇)),

𝑠 .𝑡 . 𝜔∗ (𝑎1:𝑇) = arg min
𝜔 ∈Ω (𝑎1:𝑇)

L𝑡𝑟𝑎𝑖𝑛 (𝑎1:𝑇 , 𝜔),
(1)

where𝑇 is the number of components, 𝑎∗1:𝑇 is the best architecture
set for all components, 𝐴1:𝑇 is the search space for all the compo-
nents, 𝜔∗ (𝑎1:𝑇) is the best model parameter for architecture 𝑎1:𝑇 ,
and Ω(𝑎1:𝑇) is the parameter space given architecture 𝑎1:𝑇 .

3.1.2 One-shot Formulation. It is almost impossible to solve Equa-
tion (1) directly. There are two critical problems: 1) we can not ex-
haustively search all the possible architectures in the search space;
2) To evaluate an architecture, we need to train it from scratch,
which will cost an unaffordable amount of resources. To handle the
above problems, we design an efficient search method inspired by
previous work [1, 8]. Equation (1) is divided into two independent
optimization problems by decoupling the dependency between ar-
chitecture and parameters. The proposed algorithm is formulated
in Equation (2) and (3). We omit subscribe of 𝑎1:𝑇 for convenience.
The one-shot formulation is:

𝑎∗ = arg min
𝑎∈𝐴

L𝑣𝑎𝑙 (𝑎,𝜔∗), (2)

𝑠 .𝑡 . 𝜔∗ = arg min
𝜔 ∈Ω

E𝑎∼Γ (𝐴)L𝑡𝑟𝑎𝑖𝑛 (𝑎,𝜔), (3)

where Γ(𝐴) is a prior architecture distribution of 𝐴, Ω is the pa-
rameter space of supernet that contains all architectures in the
search space, and 𝜔∗ is the best supernet parameter, 𝑎 is the sub-
architecture of the supernet, and all the sub-architectures share
the same supernet parameters. In this way, to obtain the result in
Equation (3), we no longer need to train each architecture from
scratch, which significantly reduces computation costs.

3.2 Integrated Search Space
Our search space includes all components for a CTR prediction
model. It is worth noting that these search spaces consist of different
types and amounts of operations, and they must be represented
separately. In addition, interfaces between existing components
also form new search spaces. We conclude all the components as

embedding layer, feature projection layer, interaction layer, feature
interaction selection layer, MLP structure layer and MLP layer.

Embedding Layer. The main idea is to represent different fea-
tures with mixed dimension embeddings. The candidate embedding
dimensions form a dimensionality set S1 = {𝑑1, 𝑑2, ..., 𝑑𝑛}. An in-
put instance that has𝑀 features, i.e. 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑀] ∈ R𝑀 . For
each feature 𝑥𝑚 , a dimension 𝑑𝑚 ∈ S1 will be chosen. Thus for an
input instance we have:

𝑒 = [𝑒1, 𝑒2, ..., 𝑒𝑀], (4)
where for𝑚 ∈ {1, 2, ..., 𝑀}, 𝑒𝑚 is an embedding with size 𝑑𝑚 .

Feature Projection Layer. After the embedding dimension
is chosen, to let features be able to interact, we must unify the
dimensions. Most previous works[21, 41, 42] project embeddings
to a large and fixed dimension, but in this way the representation
ability of new dimension may not suitable for the interaction. We
introduce a new search space for the projection dimensions in the
interface between embedding and interaction layer. The candidate
projection dimension set is denoted as S2 = {𝑑1, 𝑑2, ..., 𝑑𝑛}. For
each feature interaction pair (𝑒𝑖 , 𝑒 𝑗) with dimension 𝑑𝑖 and 𝑑 𝑗 , if a
projection dimension 𝑑𝑘 is chosen, the embeddings of this pair will
be both transformed to R𝑑𝑘 space:

𝑒𝑖 = 𝑃𝑖→𝑘 (𝑒𝑖),
𝑒 𝑗 = 𝑃 𝑗→𝑘 (𝑒 𝑗),

(5)

where 𝑃𝑖→𝑘 (·) and 𝑃 𝑗→𝑘 (·) are the linear transform functions from
dimension 𝑑𝑖 to 𝑑𝑘 and 𝑑 𝑗 to 𝑑𝑘 respectively.

Interaction Layer. Previous work [38] explores lots of interac-
tion functions for feature interaction and indicates that different
dimension interaction needs different function. In our method, the
dimension of each interaction is different, which requires different
interaction function for each interaction. The candidate interaction
function set is S3 = {𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡 , 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 , 𝑓𝑝𝑙𝑢𝑠 , 𝑓𝑚𝑎𝑥 }. For a pair of
projected feature embeddings (𝑒𝑖 , 𝑒 𝑗):

𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑒𝑖 ◦ 𝑒 𝑗 ,
𝑓𝑐𝑜𝑛𝑐𝑎𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑐𝑜𝑛𝑐𝑎𝑡 [𝑒𝑖 , 𝑒 𝑗]),
𝑓𝑝𝑙𝑢𝑠 = 𝑒𝑖 + 𝑒 𝑗 ,

𝑓𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑒𝑖 , 𝑒 𝑗),

(6)

where 𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡 is Hadamard product, 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 concatenates two
vectors as a new vector and transforms it to the dimension of
original vectors. 𝑓𝑝𝑙𝑢𝑠 lets two vectors do bitwise addition. 𝑓𝑚𝑎𝑥

takes bitwise maximum value from two vectors. All the interaction
functions take two vectors as inputs and return a vector with the
exact dimension of the input vectors, as shown in Equation (7).

𝑣𝑖, 𝑗 = 𝑓∗ (𝑒𝑖 , 𝑒 𝑗), (7)
where 𝑓∗ ∈ S3, 𝑒𝑖 and 𝑒 𝑗 are projected feature of feature 𝑖 and 𝑗

respectively.
Selection of Feature Interactions. Suppose there are𝑚 fea-

tures, then there will be𝑚 first-order features and𝐶2
𝑚 second-order

feature interaction pairs. Putting all of them into a model is not an
optimal solution because most of them are useless or even noisy.
To select the optimal combination, we will face 2𝑛 choices for the
first-order and 2𝐶2

𝑛 choices for second-order feature interaction.
There will be 2𝑛+𝐶2

𝑛 possible combination for the interaction selec-
tion, which is difficult to handle. The search space is denoted as

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2104

S4 = {0, 1} (𝑛+𝐶2
𝑛) , where 1 stands for the interaction is selected

and 0 otherwise. We will solve it by generating probability over
each choice, and the method will be introduced later.

MLP Structure Layer. Existing works usually concatenate all
vectors together and feed them to the MLP. However, low- and
high-order implicit feature interactions are not considered simulta-
neously. In our search space, we design a novel space for mixed low-
and high-order implicit feature interactions, as shown in Figure 2.
All the layers in MLP are candidates for a feature interaction vector.

…

…

MLP structure

The chosen connection

The unchosen connection

Figure 2: To make implicit interaction in the MLP compo-
nent more effective, each explicit interaction results will be
inserted into one of the layer.

The candidate set can be denoted as S5 = {1, 2, ..., 𝐿}, where 𝐿 is
the layer number of MLP.

When the interaction result 𝑣𝑖, 𝑗 for feature pair (𝑖, 𝑗) is inserted
into 𝑙-th layer, 𝑣𝑖 𝑗 is concatenated with the output of (𝑙 −1)-th layer
𝑜𝑙−1 to be the input of 𝑙-th layer, as shown in Equation (8).

𝑜𝑙 = 𝑓𝑙 (𝑐𝑜𝑛𝑐𝑎𝑡 [𝑣𝑖 𝑗 , 𝑜𝑙−1]), (8)

MLPLayer. The search space forMLP is the basic unit number in
each layer. Due to the insertion of interaction vectors, the structure
space of MLP is dynamically changed. We define the search space as
the basic dimension of MLP in each layer, i.e. S6 = {ℎ1, ℎ2, ..., ℎ𝑛}.
The final architecture of MLP will be decided by both the basic
dimension and the insertion of interaction vectors.

3.3 Performance Prediction
We construct a supernet and predict the performance of the sub-
architectures by inheriting parameters from the supernet.

3.3.1 Supernet with Ordinal Parameter sharing. We construct a
supernet with ordinal parameter sharing. In the search space, the
difference among sub-architectures is the dimension of embeddings
or feature maps. It will be efficient for the supernet to use ordinal
parameter sharing because it can reuse most of the parameters,
and all the sub-architectures can conveniently share the supernet
parameters.

The ordinal parameter sharing can be formulated as follow. Given
a dimension search space 𝑆 = {𝑑1, 𝑑2, ..., 𝑑𝑛}where𝑑𝑖 < 𝑑 𝑗 for 𝑖 < 𝑗 ,
the supernet is constructed with the maximum dimension 𝑑𝑛 . In

the supernet, the feature map is kept as 𝑣 ∈ 𝑅𝑑𝑛 . To obtain a sub-
architecture with dimension 𝑑∗, use

𝑣∗ = 𝑣 ·
[
I𝑑

∗

0

] [𝑑𝑛×𝑑∗]
, (9)

where I𝑑∗ is a square identity matrix with size 𝑑∗. The transform
matrix is with size 𝑑𝑛 × 𝑑∗.

We define the operation with the most parameters or calculation
as the supernet architecture for those layers whose choice set is
not dimension. In detail, in the Interaction layer, the concatenation
operation has the most parameters. In the Selection of Feature
Interactions layer, we let all vectors be concatenated to the bottom
layer in the supernet.

3.3.2 Knowledge Distillation Based Supernet Training. As described
in Section 3.3.1, the supernet is the architecture that has the most pa-
rameters. To solve Equation (3), i.e., to find the best supernet param-
eters that maximize the reward expectation of all sub-architectures,
we need a proper training method for the supernet that can uti-
lize the shared parameters and get the accurate performance of
sub-architecture.

Knowledge Distillation(KD) [12] was proposed to transfer knowl-
edge from teacher network to student network. KD can be applied
to help NAS training[17]. Inspired by previous works, we design a
KD-based supernet training method.

We define the architecture with the most parameters as teacher
network and any generated sub-architecture as student network.

Training Procedure. Firstly we declare some notations in one
data batch: Denote the training data as {𝑥,𝑦}. Denote the supernet
as 𝑓 (·) and the supernet parameter as 𝜔 . Denote the architecture
with most parameters as teacher network 𝑎𝑡 . Denote any other sub-
architecture as student network 𝑎𝑖 (𝑖 = 1, 2, ..., 𝑁) where 𝑁 is the
student network number. 𝑓 (𝑥 ;𝜔, 𝑎) is the performance prediction
for 𝑥 given supernet parameter 𝜔 and architecture 𝑎.

There are two steps in one data batch for supernet updating.
Step One: calculate the predicted value for teacher network

𝑦𝑡 = 𝑓 (𝑥 ;𝜔, 𝑎𝑡). The objective is to minimize the cross-entropy
of predicted values and the labels:

L(𝑦,𝑦𝑡) = −𝑦 log𝑦𝑡 − (1 − 𝑦) log(1 − 𝑦𝑡), (10)

where 𝑦 ∈ {0, 1} is the label and 𝑦𝑡 ∈ (0, 1) is the predicted proba-
bility of 𝑦 = 1.

And supernet parameter 𝜔 will be updated by

𝜔𝑡 = 𝜔 − 𝛼∇𝜔L(𝑦,𝑦), (11)

where 𝛼 is the learning rate.
Step Two: Compute the prediction of teacher network

𝑦𝑡 = 𝑓 (𝑥 ;𝜔𝑡 , 𝑎𝑡), (12)

Generating 𝑁 sub-architectures as student networks. For each
student network 𝑎𝑖 , compute prediction of student network:

𝑦𝑖 = 𝑓 (𝑥 ;𝜔𝑡 , 𝑎𝑖), (13)

Use the prediction of teacher network as soft label for the sub-
architectures to compute soft loss:

L𝑠𝑜 𝑓 𝑡 = L(𝑦𝑡 , 𝑦𝑖), (14)

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2105

Use the real label to compute hard loss:

Lℎ𝑎𝑟𝑑 = L(𝑦,𝑦𝑖), (15)

After computing all losses of the student networks, the supernet
parameters will be updated by

𝜔𝑠 = 𝜔𝑡 − 𝛼
1
𝑁

𝑁∑︁
𝑖=1

∇𝜔𝑖 [𝛽L𝑠𝑜 𝑓 𝑡 + (1 − 𝛽)Lℎ𝑎𝑟𝑑], (16)

where 𝜔𝑖 ⊂ 𝜔𝑡 is the parameters of sub-architecture 𝑎𝑖 . 𝛽 is a
hyper-parameter which determines the weight of soft and hard
loss.

3.4 Search Strategy
We propose an architecture generator network to search through
the search space. The architecture generator network will be trained
by policy gradient.

3.4.1 Architecture Generator Network. To solve Equation (2), we
need to find the best architecture from the search space. How-
ever, the search space introduced in Section 3.2 is large, and we
need an efficient searching method. As introduced before, there
are six components and six corresponding search spaces. Previ-
ous works usually utilize an RNN as the controller to generate
architectures[43], and it models the relations between operations in
an implicit manner. However, in our scenario, the components are
not in the same structure space, and we must design a proper gen-
erator network to model the dependencies explicitly. We propose
architecture generator network that can utilize the dependencies
among components and output probability on each choice of the
components. For each component, the input is the chosen state of
previous components. The Architecture Generator Network is a
neural network that takes in multiple states of previous compo-
nents and returns the probability distribution 𝑃 over the candidate
set. The architecture of the corresponding component is sampled
from 𝑃 . The architecture generator networks are formulated as:

𝑃𝑖 = 𝜋𝑖 (\𝑖 , 𝑎𝑖−1, ..., 𝑎1),
𝑎𝑖 ∼ 𝑃𝑖 ,

(17)

where 𝜋𝑖 (·) represents the architecture generator network for com-
ponent 𝑖 , \𝑖 is the corresponding parameters, 𝑎 𝑗 (𝑗 = 0, 1, .., 𝑖 − 1) is
the choice of previous component. The architecture 𝑎𝑖 is sampled
from probability distribution 𝑃𝑖 .

3.4.2 Optimization of the Architecture Generator Network. As de-
scribed in Section 3.4.1, the generator is formulated as a policy
network. To train the generator network, we adopt the policy gradi-
ent method. The parameters are denoted as \ . The expected reward
of the policy network will be maximized. The expected reward is
represented by 𝐽 (\):

𝐽 (\) = E𝑃 (𝑎;\)𝑅, (18)

Considering that the reward 𝑅 is non-differential, the policy
gradient method is used to iteratively update \ , which is a common
practice in previous NAS works[24, 43]. Thus,

∇\ 𝐽 (\) = E𝑃 (𝑎;\)∇\ log 𝑃 (𝑎;\)𝑅, (19)

Algorithm 1: Overall Optimization Algorithm
Input: Training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 , Validation dataset 𝐷𝑣𝑎𝑙

Output: An architecture 𝑎∗ with best performance
Initialize Supernet parameter 𝜔 randomly;
Initialize Architecture Generator Network \ randomly;
for Epoch =1,2,3,.. do

Sample training batch {𝑥𝑡𝑟𝑎, 𝑦𝑡𝑟𝑎} from 𝐷𝑡𝑟𝑎𝑖𝑛 .
Update supernet parameters 𝜔 by Equation (10)(11).
Get teacher network prediction 𝑦𝑡 by Equation (12).
Generate architecture distribution 𝑃 (𝑎;\).
for i =1,2,..,N do

Sample student network architecture 𝑎𝑖 from 𝑃 (𝑎;\).
Compute prediction 𝑦𝑖 by Equation (13).
Compute soft and hard loss by Equation (14)(15).

Update all student networks by Equation (16).
for architecture batch i =1,2,..,M do

Generate architecture distribution 𝑃 (𝑎;\).
Sample sub-architecture 𝑎𝑖 from 𝑃 (𝑎;\).
Make prediction 𝑦𝑖 = 𝑓 (𝑥𝑡𝑟𝑎 ;𝜔, 𝑎𝑖).
Get reward 𝑅𝑖 by Equation (22).

Compute policy gradient by Equation (20).
Update Generator \ by Equation (21).
Sample an architecture 𝑎∗ from updated distribution.
Validate performance of 𝑎∗ on 𝐷𝑣𝑎𝑙 .
if Validation performance is not improving then

Break;
Output best architecture 𝑎∗.

In practice, Equation (19) can be approximated as

∇\ 𝐽 (\) ≈
1
𝑀

𝑀∑︁
𝑖=1

∇\ log 𝑃 (𝑎𝑖 ;\)𝑅𝑖 , (20)

where 𝑀 is the number of different architectures sampled by the
generator in one batch. 𝑅𝑖 is the reward of the 𝑖-th architecture, as
defined in Equation (22).

With the gradient ∇\ 𝐽 (\), the parameters of policy network is
updated with:

\ = \ + 𝛼\∇\ 𝐽 (\), (21)
where 𝛼\ is the learning rate for the policy network.

Reward. The reward should reflect the performance of the gen-
erated architecture, and the policy network should be optimized to
maximize the reward. We use Area Under roc∗ Curve (AUC) to mea-
sure the performance of CTR prediction model following previous
works[19, 21]. When an architecture is generated, a corresponding
CTR prediction model is created to be trained. Afterward, the model
makes a prediction on the validation dataset and returns an AUC
value 𝜏 . In our work, the performance prediction is made by the
supernet, which brings a challenge: the AUC value will increase
through the supernet training process, and the absolute AUC value
can not give a correct signal. To ensure an adaptive and correct
reward signal, we keep track of the history AUC average value
𝜏 and use the difference between current AUC value and history

∗roc: receiver operating characteristic.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2106

average AUC value as the reward value:
𝑅 = 𝜏 − 𝜏, (22)

and the history average AUC value is updated by:
𝜏 = 𝛼𝜏𝜏 + (1 − 𝛼𝜏)𝜏, (23)

where 𝛼𝜏 is a hyper-parameter that controls the weight of history
AUC values.

By designing the above reward, when the policy network gen-
erates an architecture that achieves better performance than the
historical average, the policy network is optimized along the di-
rection to produce better architectures. On the contrary, if the
performance of generated architecture is worse than the historical
average, the policy network will be optimized to be away from
current position.

4 EXPERIMENT
This section will introduce extensive experiments conducted on
two public datasets to demonstrate the effectiveness of AutoIAG.
The datasets are introduced in Section 4.1. The implementation
details of our framework are introduced in Section 4.2. We present
the experiment results and analysis of the performance of AutoIAG
in Section 4.3. We conduct additional experiments to verify the
effectiveness of the training methods in Section 4.4.

4.1 Dataset
To make a fair comparison with previous works, we conduct experi-
ments on two public datasets.Avazu † was released for a mobile ad
click prediction contest on Kaggle. Following the setting of previous
works [15, 19], 80% data is sampled randomly for training and vali-
dation, the other 20% is used for testing. Categories appearing less
than 20 times are regarded as a same feature value. Criteo‡ was a
click log dataset for the Criteo display advertisement challenge.

The statistics of aforementioned dataset are listed in Table 2.

4.2 Implementation Detail
The implementation details of our framework are introduced in
this section.

4.2.1 Search Space. The search space of all components in our
experiments is shown in Table 3, where 𝑛 is the feature number
in the dataset. The implementation of our framework is limited to
second-order interactions, but it is easy to extend to higher-order
interactions. In each component of the searched CTR prediction
model, the choice for each feature or interaction is independent.
Thus we have 𝑛 or𝐶2

𝑛 decisions to make. There are six components
in our search space, including the feature embedding dimension,
projection dimension, interaction function, selection of interaction,
insertion of interactions, and hidden units in MLP. Theoretically,
the feature embedding dimension and projection dimension can
be a continuous number, but it will increase the difficulty for the
generator network to produce a probability distribution over these
candidates. To simplify the framework without losing representa-
tion capacity, we choose exponents of two as candidate dimensions.
The candidate set for embedding and projection dimensions keeps
†http://www.kaggle.com/c/avazu-ctr-prediction
‡https://labs.criteo.com/2013/12/download-terabyte-click-logs/

identical because the same level of information capacity is expected.
For the interaction function, we set four often used interaction func-
tions as the candidates. The selection of interaction is to activate
an interaction or not. The insertion of interactions decides each
interaction will be inserted to which layer. The hidden units in MLP
construct the basic structure of MLP, and we set a search space for
it as well.

4.2.2 Supernet. To improve the training efficiency of the supernet,
we implement the supernet using ordinal parameter sharing. We
use the max dimension choice to construct the supernet for the
components whose search space is dimension. To obtain its sub-
architectures, we activate the proper dimension of the supernet.
For example, if the search space of the embedding dimension is
{4, 8, 16}, the embedding dimension in supernet will be 16. To obtain
a sub-architecture with eight dimension embedding, we will take
the first half of the supernet embedding as the parameter of the sub-
architecture. We enumerate each choice for the components whose
search space is not dimension choice, i.e., the interaction layer
and selection of feature interactions. Because these components
have no parameters, enumeration will not hurt efficiency. For the
insertion of interactions, the parameters of each interaction are
shared between sub-architectures. The supernet constructs a super
MLP that includes all interactions to all layers. When an insertion
instance is sampled, the corresponding connection will be activated.
Considering the interactions have dimension choice, the super MLP
component will also adopt ordinal parameter sharing.

4.2.3 Architecture Generator Network. In practice, we represent
the choice state of each component in an embedding space. The
embeddings will be updated along with the network. For each
component, to generate the architecture probability distribution
𝜋𝑖 (𝑎𝑖 |\, 𝑠0:𝑖−1), we feed state 𝑠 𝑗 (𝑗 < 𝑖) from the embedding space to
a three-layer MLP \ . The output of the MLP goes through a softmax
layer to produce a probability distribution 𝜋𝑖 . The final architecture
choice is sampled from 𝜋𝑖 and acts as the state of this component.
For example, suppose the search space for the feature projection
layer is {4, 8, 16} and the corresponding embedding space will be
three embeddings. The corresponding embedding will serve as the
state when one candidate is chosen and the embedding will be
fed to the generator network to generate architecture probability
distribution for other components.

4.2.4 Optimization. The supernet is trained by the Adam[16] op-
timizer with an initial learning rate 0.001. The student number in
Equation (16) is set to 9. The weight 𝛽 for soft and hard loss is set
to 0.5. The Adam optimizer trains the generator network with an
initial learning rate of 0.001. The architecture sampled number in
Equation (20) is set to 4.

4.3 Experiment Result and Analysis
4.3.1 Results. We compare the result with classical CTR predic-
tion models and automation works in Table 1. We collect perfor-
mance of representative hand-crafted CTR prediction models in-
cluding FM[29], DeepFM[10] and PIN[27]. For automated CTR pre-
diction model, we collect AutoInt[33], AutoCTR[32], AutoFIS[19],
and AutoFeature[15] for comparison. For fair comparison, in Aut-
oFIS and AutoFeature, search space for interaction is limited to

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2107

http://www.kaggle.com/c/avazu-ctr-prediction
https://labs.criteo.com/2013/12/download-terabyte-click-logs/

Table 1: Experiment results on public datasets.

Avazu Criteo Overall Rank
Models AUC Log Loss Rank AUC Log Loss Rank (The smaller, the better)
FM[29] 0.7793 0.3805 6 0.7909 0.5500 8 14
DeepFM[10] 0.7836 0.3776 5 0.7991 0.5423 7 12
PIN[27] 0.7872 0.3755 3 0.8021 0.5390 4 7
AutoInt+[33] 0.7774 0.3811 8 0.8083 0.4434 2 10
AutoCTR[32] 0.7791 0.3800 7 0.8104 0.4413 1 8
AutoFIS(2nd)[19] 0.7852 0.3765 4 0.8009 0.5404 6 10
AutoFeature(2)[15] 0.7874 0.3753 1 0.8020 0.5395 5 6

AutoAIS(ours) 0.7873 0.3756 2 0.8059 0.5356 3 5

Table 2: Statistics of datasets

Dataset Instances Features Category

Avazu ∼ 4 ∗ 107 23 ∼ 6 ∗ 105

Criteo ∼ 1 ∗ 108 39 ∼ 1 ∗ 106

Table 3: Search space for all components.

Component Candidate Set
Embedding dimension S1 = {4, 8, 16, 32, 64, 128}𝑛
Projection dimension S2 = {4, 8, 16, 32, 64, 128}𝐶2

𝑛

Interaction function S3 = {𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑐𝑜𝑛𝑐𝑎𝑡, 𝑝𝑙𝑢𝑠,𝑚𝑎𝑥}𝐶2
𝑛

Selection of interaction S4 = {0, 1}𝑛+𝐶2
𝑛

Insertion of interaction S5 = {0, 1, 2, 3, 4, }𝑛+𝐶2
𝑛

Hidden units in MLP S6 = {64, 128, 256}5

second order. Following previous work[15, 19, 32], we use the of-
fline evaluation metrics of AUC(Area Under ROC) and log loss(cross
entropy) which are commonly used as the surrogates for the actual
CTR. Generalization ability is also an important metric for CTR
prediction, especially for AutoML-based methods. We rank the test-
ing AUC values for these works on two datasets respectively and
use sum of the ranks to show model’s overall generalization ability.

4.3.2 Performance Analysis. We first note that most baselines have
inconsistent performances on two datasets. PIN uses a fixed sub-
network as the feature interaction function, andAutoFeature searches
the sub-network for interaction. They both achieve remarkable
performance on Avazu, but they do not perform well on Criteo.
AutoCTR and AutoInt+ achieve the best performance on Criteo but
perform poorly on Avazu. It can be observed that AutoML-based
models outperform most of the hand-crafted baseline models. The
searched architectures can better model the feature interactions
and extract information from data.

However, for an AutoML-based method, the more critical metric
should be the automation and generalization ability across differ-
ent data. AutoAIS(ours) does not achieve the best performance
in a single dataset compared to all the baselines, but AutoAIS al-
ways ensures stable and near-the-best performance across different
datasets. For the overall rank on datasets, AutoAIS has the highest

rank, which implies its generalization ability. The reason is that
AutoAIS searches all the components, and it gives a larger space
for finding the proper architectures to handle various kinds of data,
while other automation works only focus on a single component
leading to weaker generalization ability.

In conclusion, as an AutoML-based method, AutoAIS outper-
forms other automation works in terms of generalization ability
and keeps competitive for each dataset.

4.4 Ablation Study
In this section, we conduct experiments to verify the effectiveness
of the training methods in our framework. In each group of experi-
ments, we only change the target condition while remaining other
hyper-parameters as the baseline setting for convenience. Some
settings are shared between experiment groups.

4.4.1 Influence of Knowledge Distillation. We verify the effective-
ness of knowledge distillation by comparing it with directly training
sub-architecture with hard loss (i.e., beta=0). We also explore the
influence of weight between soft loss and hard loss. The result is
shown in Figure 3. We can observe that Knowledge distillation can
fasten the training process and achieve lower loss. With proper
weight for soft and hard loss, we can train the supernet efficiently.

4.4.2 Influence of Student Number in KD-based Training. Student
number refers to the sub-architecture number in each batch. It
determines how many sub-architectures will be updated according
to the knowledge of supernet. We study the influence of student
number. The result is shown in Figure 4. It can be observed that
when the student number is small, the training process is unstable.
However, when the student number exceeds nine, the improvement
is marginal. Considering that a large student number will cost more
resources, we set the student number as nine to ensure a proper
trade-off between the marginal improvement and efficiency.

4.4.3 Effectiveness of the Architecture Generator Network. Our search
strategy is to train a generator network to learn the architecture
distribution, guiding the sub-architecture sampling. To verify the
effectiveness of the generator network, we replace the generator
network with a random search in our framework. The comparison
of the training process is shown in Figure 5. In this experiment, we
choose the simplest setting: knowledge distillation is disabled, and

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2108

Figure 3: The influence of Knowledge Distillation. Beta is
defined in Equation (16).

Figure 4: The influence of student sub-architecture num-
ber.

Figure 5: The influence of architecture generator network. Figure 6: The influence of sub-architecture number to
train the generator in one batch.

the sub-architecture number is one in each batch. The figure shows
that the loss of generator-guided training is more stable and lower
than that of random search.

4.4.4 Influence of Sub-architecture Number to Train the Generator.
To optimize the generator network, we sample𝑚 architectures in
one batch. The generator network will be updated according to
the rewards of the sampled architectures. In practice, the number
of sampled architecture will affect the training for the generator
network, and experiments are conducted to study the influence.
The result is shown in Figure 6. According to the experiment re-
sults,𝑚 = 4 is the best choice. If m=1, i.e., there is only one sub-
architecture to generate a reward for the generator network, the
generator network will not get enough guidance. If𝑚 is too large,
all the sub-architectures may distract the generator and slow the im-
provement. A proper amount of sub-architectures will help training
the generator to generate better architectures.

5 CONCLUSION
In this paper, we propose a NAS-based framework, Automatic Inte-
grated Architecture Searcher (AutoIAS), to automatically search for
an integrated interaction-based CTR prediction model architecture

whose components are compatible with each other. In AutoIAS, the
proposed search space covers all the existing interaction-based CTR
prediction model components and introduces two novel interface
search spaces: Projection Dimension and MLP Structure. Moreover,
an architecture generator network explicitly models dependen-
cies among components and generates conditioned architecture
probability distribution for each component, and the architecture
generator network is optimized by policy gradient. The perfor-
mance of the generated architectures is obtained by a supernet. We
utilize a knowledge-distillation-based supernet training method
to train a supernet to ensure that the performance prediction is
stable and consistent. Through substantial experiments, we show
that AutoIAS outperforms previous automation works for the CTR
prediction model in terms of stability and generalization ability.
Ablation study shows the effectiveness of the proposed training
methods in AutoIAS.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and De-
velopment Program of China under Grant No.2020AAA0106301,
National Natural Science Foundation of China No.62050110 and
Tsinghua GuoQiang Research Center Grant 2020GQG1014.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2109

REFERENCES
[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc

Le. 2018. Understanding and simplifying one-shot architecture search. In Pro-
ceedings of the International Conference on Machine Learning. 550–559.

[2] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2014. Simple and scalable
response prediction for display advertising. ACM Transactions on Intelligent
Systems and Technology (TIST) 5, 4 (2014), 1–34.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[4] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Differentiable Neural
Input Search for Recommender Systems. CoRR abs/2006.04466 (2020).

[5] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. 2019. FairNAS: Rethink-
ing Evaluation Fairness of Weight Sharing Neural Architecture Search. CoRR
abs/1907.01845 (2019).

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. J. Mach. Learn. Res. 20 (2019), 55:1–55:21.

[7] Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James
Zou. 2019. Mixed Dimension Embeddings with Application to Memory-Efficient
Recommendation Systems. CoRR abs/1909.11810 (2019).

[8] Chaoyu Guan, Yijian Qin, Zhikun Wei, Zeyang Zhang, Zizhao Zhang, Xin Wang,
and Wenwu Zhu. [n.d.]. One-Shot Neural Channel Search: What Works and
What’s Next. ([n. d.]).

[9] Chaoyu Guan, Xin Wang, and Wenwu Zhu. 2021. Autoattend: Automated at-
tention representation search. In International Conference on Machine Learning.
PMLR, 3864–3874.

[10] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence.
1725–1731.

[11] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th ACM International Conference on
Research and Development in Information Retrieval. 355–364.

[12] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015).

[13] Manas R. Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K. Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V. Le. 2020. Neural Input Search for Large
Scale Recommendation Models. In Proceedings of the 26th ACM Conference on
Knowledge Discovery and Data Mining. 2387–2397.

[14] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
aware factorization machines for CTR prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems. 43–50.

[15] Farhan Khawar, Xu Hang, Ruiming Tang, Bin Liu, Zhenguo Li, and Xiuqiang He.
2020. AutoFeature: Searching for Feature Interactions and Their Architectures
for Click-through Rate Prediction. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 625–634.

[16] Diederik P. Kingma and JimmyBa. 2015. Adam: AMethod for Stochastic Optimiza-
tion. In Proceedings of the International Conference on Learning Representations.

[17] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang
Lin, and Xiaojun Chang. 2020. Block-wisely supervised neural architecture
search with knowledge distillation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 1989–1998.

[18] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In Proceedings of the 24th ACM International
Conference on Knowledge Discovery and Data Mining. 1754–1763.

[19] Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xi-
uqiang He, Zhenguo Li, and Yong Yu. 2020. Autofis: Automatic feature interaction
selection in factorization models for click-through rate prediction. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2636–2645.

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
Architecture Search. In Proceedings of the 7th International Conference on Learning
Representations.

[21] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang. [n.d.].
Automated Embedding Size Search in Deep Recommender Systems. In Proceed-
ings of the 43rd ACM International conference on research and development in
Information Retrieval. 2307–2316.

[22] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM
International Conference on Knowledge Discovery and Data Mining. 1222–1230.

[23] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. CoRR abs/1906.00091 (2019).

[24] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018.
Efficient Neural Architecture Search via Parameter Sharing. In Proceedings of the
35th International Conference on Machine Learning, Vol. 80. 4092–4101.

[25] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In Proceedings
of the 16th IEEE International Conference on Data Mining. 1149–1154.

[26] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo,
Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user response
prediction over multi-field categorical data. ACM Transactions on Information
Systems (TOIS) 37 (2018), 1–35.

[27] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo,
Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user response
prediction over multi-field categorical data. ACM Transactions on Information
Systems (TOIS) 37, 1 (2018), 1–35.

[28] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2020. A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions. CoRR abs/2006.02903 (2020).

[29] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. 995–1000.

[30] Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 1–22.

[31] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. 521–530.

[32] Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian,
and Xia Hu. 2020. Towards Automated Neural Interaction Discovery for Click-
Through Rate Prediction. In Proceedings of the 26th ACM International Conference
on Knowledge Discovery & Data Mining. 945–955.

[33] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[34] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. In Proceedings of the ADKDD’17. 12:1–12:7.

[35] Xin Wang, Shuyi Fan, Kun Kuang, and Wenwu Zhu. 2021. Explainable automated
graph representation learning with hyperparameter importance. In International
Conference on Machine Learning. PMLR, 10727–10737.

[36] Xin Wang and Wenwu Zhu. 2021. Automated Machine Learning on Graph. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 4082–4083.

[37] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. 2021. Pooling Archi-
tecture Search for Graph Classification. In International Conference on Information
and Knowledge Management.

[38] Quanming Yao, Xiangning Chen, James T Kwok, Yong Li, and Cho-Jui Hsieh.
2020. Efficient neural interaction function search for collaborative filtering. In
Proceedings of The Web Conference 2020. 1660–1670.

[39] Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2021. Automated Machine Learning
on Graphs: A Survey. In International Joint Conference on Artificial Intelligence.
4704–4712.

[40] Pengyu Zhao, Kecheng Xiao, Yuanxing Zhang, Kaigui Bian, and Wei Yan. 2020.
AMER: Automatic Behavior Modeling and Interaction Exploration in Recom-
mender System. CoRR abs/2006.05933 (2020).

[41] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2020. Memory-efficient Embedding for Recom-
mendations. CoRR abs/2006.14827 (2020).

[42] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and
Jiliang Tang. 2020. AutoEmb: Automated Embedding Dimensionality Search in
Streaming Recommendations. CoRR abs/2002.11252 (2020).

[43] Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforce-
ment Learning. In Proceedings of the 5th International Conference on Learning
Representations.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2110

	Abstract
	1 Introduction
	2 Related work
	2.1 CTR Prediction
	2.2 NAS And Its Application in CTR Prediction Model.

	3 AutoIAS
	3.1 Problem Definition
	3.2 Integrated Search Space
	3.3 Performance Prediction
	3.4 Search Strategy

	4 Experiment
	4.1 Dataset
	4.2 Implementation Detail
	4.3 Experiment Result and Analysis
	4.4 Ablation Study

	5 Conclusion
	Acknowledgments
	References

